相关文章

从亚航失联谈光纤水下声音探测技术

来源网址:http://www.hnhyqs.com/

导读: “亚航事件”中,搜索难度怎样、搜索力度如何?都倍牵人心。鉴于今年多起飞机失联事件,飞机是否顺利抵达目的地越发牵动人心。特此探讨“光纤水下声音探测技术”。

  主动声呐:主动发射超声波,然后收测目标回波进行判断,测试准确度较高,但容易暴露,被发现,不适合用于隐蔽性探测场所。被动声呐,能够隐蔽收听目标发出的噪声,判断出目标的位置和特性,但测试的准备度不高。而应对水下声呐技术,各国也在大力进行反声呐系统的研究与开发。

  反声呐系统:可以吸收声呐波,目前大致可以做到吸收96%的总声呐波,只反射回4%,这样对方声呐就很难发现潜艇的存在。而同时,各国潜艇的降噪水平越来越高,反探测能力越来越强。

  目前水声探测所用的水听器一般都是声压水听器,它只能得到声场的声压标量。而水下环境的特殊性使得声波成为主要的信息传输工具,同时也对电磁类器件在水下的长期使用提出了诸多限制。传统的压电陶瓷具有噪声大、动态范围小、抗电磁干扰与信号串扰能力差、结构笨重、不适于远距离传输、组网等缺点。

  光纤水听器是建立在光纤、光基础上的水下声信号传感器,它能将水声信号转换成光信号,再通过光纤传至信号处理系统从而提取声信号信息,具有探测灵敏度高,频响特性好,频带宽,动态范围大,抗电磁干扰、耐静压及抗腐蚀能力强,体积小、重量轻等特点,还有易于全天候实时探测和识别、易于集成化以及网络化等优点。光纤水听器按原理可分为干涉型、强度型、光栅型等。

  三种典型的光纤水听器工作原理

  干涉型

  干涉型光纤水听器是基于光学干涉仪的原理构造的。

  (a) Michelson干涉仪;(b) Mach2Zehnder干涉仪;(c) Fabry2Perot干涉仪; (d)Sagnac干涉仪

  图1(a)是基于Michelson光纤干涉仪光纤水听器的原理示意图。由激光器发出的激光经3dB光纤耦合器分为两路:一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,提供参考相位。两束波经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,经过信号处理就可以拾取声波的信息。

  图1(b)是基于Mach2Zehnder光纤干涉仪光纤水听器的原理示意图。激光经3dB光纤耦合器分为两路,分别经过传感臂与参考臂,由另一个耦合器合束发生干涉,经光电探测器转换后拾取声信号。

  图1(c)是基于Fabry2Perot光纤干涉仪光纤水听器的原理示意图。由两个反射镜或一个光纤布拉格光栅等形式构成一个Fabry2Perot干涉仪,激光经该干涉仪时形成多光束干涉,通过解调干涉的信号得到声信号。

  图1(d)是基于Sagnac光纤干涉仪光纤水听器的原理示意图。该型光纤水听器的核心是由一个3×3光纤耦合器构成的Sagnac光纤环,顺时针或逆时针传播的激光经信号臂时对称性被破坏,形成相位差,返回耦合器时干涉,解调干涉信号得到声信号。

  基于Sagnac干涉仪光纤水听器的优点:①光源的相位噪声将不转换为系统的强度噪声,而基于Michelson及MachZehnder干涉仪,其光源相位噪声将转换为系统噪声;②不要求窄带光源,可用宽带超荧光光源代替;③偏振衰落被最小化。但基于Sagnac干涉仪的光纤水听器也有缺点,如低频不敏感,进行多路复用时困难较大。